

Vol. 4. Issue 2. February 2017

Simulation Optimization and Parametric Study of a Grid Connected Solar Power Plant for Commercial Rooftop as well as on Utility Scale

Devesh Tripathi¹ and Pankaj Kumar Mishra¹

Krishna Engineering College, Loni, Ghaziabad, Uttar Pradesh, India¹

Abstract: As the nonrenewable energy sources is about to end, future of human energy needs is in renewable energy (solar, wind, hydro etc). Solar energy are using all over the globe at micro as well as utility scale. A wide variety of tools exist for the analysis and dimensioning of both Grid connected and stand-alone photovoltaic systems. System designers and installers use simpler tools for sizing the PV system. Mostly scientists and engineers typically use more involved simulation tools for optimization. In present study design, optimization of a grid connected solar power plant at commercial rooftop as well as on utility scale in INDIA is to be discussed. Design, simulation, Optimization is going on simulation facility like PVSYST.

Keywords: PVSYST, panel, tilt, field type.

I. INTRODUCTION

Renewable energy is the future of human. Due to the high energy when the power supplied by the PV modules consumption and the reducing availability of fossil fuel exceeds load demand and releases it backs when the PV resource renewable energy (solar, wind, hydro etc) is subject to great interest over decades. Solar energy is an emerging renewable energy source using all over the globe at micro as well as utility scale. The power of sun intercepted by earth is greater than the present consumption rate on earth of all energy sources. So solar energy can provide solutions of all the present and future problems related to electricity. Solar power is the conversion of sunlight into electricity, either directly using photovoltaic (PV), or indirectly using concentrated solar power (CSP). Photovoltaic's convert light into an electric current using the photovoltaic. A rooftop photovoltaic power station, or rooftop PV system, is a photovoltaic system that has its electricity generating solar panels mounted on the rooftop of a residential or commercial building or structure. A photovoltaic (PV) system consists of a PV array, battery and elements for power conditioning. The PV system converts solar energy into dc power. If ac loads are used means, the system requires inverter to convert dc into ac.

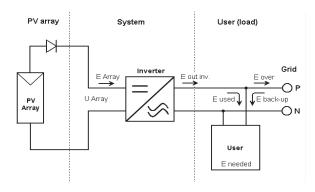
There are two types in PV system such as grid connected and standalone. Grid connected photovoltaic systems feed electricity directly to the electrical network, operating parallel to the conventional energy source. Grid-connected systems generate clean electricity near the point of use, without the transmission and distribution losses or the need for the batteries. Its performance depends on the local climate, orientation and inclination of the PV array, and inverter performance. Whereas, a stand-alone system involves no interaction with a utility grid, the generated power is directly connected to the load. In case the PV array does not directly supply a load, a storage device is needed. Mostly this is a battery, the battery bank stores

supply is insufficient. This standalone PV power generation will be used in the home for the electrification purpose. A wide variety of tools exist for the analysis and dimensioning of both Grid connected and stand-alone photovoltaic systems. System designers and installers use simpler tools for sizing the PV system. Mostly scientists and engineers typically use more involved simulation tools for optimization. Software tools related to photovoltaic systems can be classified into pre-feasibility analysis, sizing, and simulation.

PVsyst is a dedicated PC software package for PV systems. The software was developed by the University of Geneva. It integrates pre-feasibility, sizing and simulation support for PV systems. After defined the location and loads, the user selects the different components from a product database and the software automatically calculates the size of the system. In present study design, optimization and cost analysis of a solar power plant at residential, commercial rooftop as well as on utility scale in INDIA is to be discussed. Design, simulation, Optimization and cost analysis is going on simulation facility like PVSYST.

II. LITERATURE REVIEW AND PROBLEM FORMULATION

Various investigations have done on residential, commercial rooftop, Chen Zhang 2011Designed technical shelter for storing electronic and technical equipments has high indoor heat dissipation rate, and cooling load exists almost all year around. Both experimental measurements and computer simulation are carried out to analyze the indoor. T.M. Iftakharet al 2012 shown grid connected

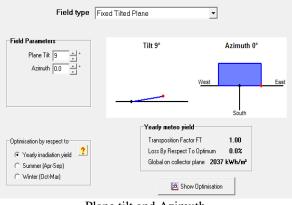

Vol. 4, Issue 2, February 2017

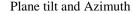
systems generate clean electricity near the point of use, without the transmission and distribution losses or the need for the batteries. Stand-alone system involves no interaction with a utility grid. Climate and energy performance of technical shelter in different conditions. C.P. Kandalama et al 2013 presented the simulation of a grid-connected solar photovoltaic system with the use of the computer software package Pvsyst and their performance was evaluated. Sangeetha. S 2014 has investigated the sizing of the solar power plant in standalone mode of operation. Based on the load survey and the utilization factor, the capacity of the plant is determined for battery sizing and PV sizing. PVSYST and C programming are used for the sizing of the solar PV power plant. Sébastin Jacques Et al 2014 described a new, highly modular simulation tool named "PVLab" and developed by the GREMAN laboratory. It is designed to assist the designer in the sizing of PV (photovoltaic) installations Jaydeep V. Ramoliya et al 2015 presented the simulation of a grid-connected solar photovoltaic system using of the computer software package Pvsyst and their performance was evaluated. Jones K. Chacko 2015 investigated the major factors which affect the performance of the solar PV module three different arrangements of solar PV modules are taken on a standalone system and Compared different panel arrangement that will minimize the floor area and maximize power generation through tracking the sun. By literature review it is clear that a comparative study of residential and utility scale PV system needed for efficient use of PV systems. Cost comparison will also give a better insight to efficient use a PV system.

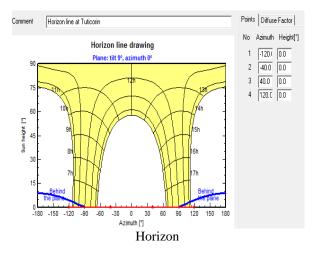
III. RESEARCH METHODOLOGY

It is a computational study using Pvsyst software facility. PVsyst is simulation software able to simulate both stand alone and grid connected PV systems. Location of system is taken Delhi ncr region. Validation will conduct on the basis of previous investigation.

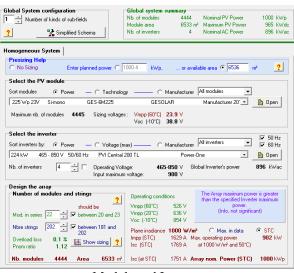
GRID CONNECTED SOLAR PV SYSTEM - A grid connected solar PV power plant is installing by compare the energy production, economic feasibility of some of the places in NORTH INDIA in DELHI using PVsyst Software. Proposed model of the grid connected PV system shown in figure. Tuticorin site is used for validation.


IV. VALIDATION

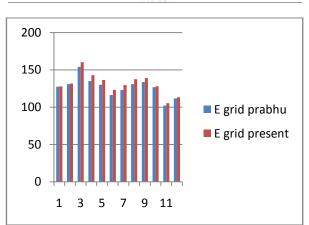

Geographical Coordinates Monthly meteo Location Site name Tuticorin India ▼ Region Asia -Country Deg. Decimal Latitude 8.78 (+ = North, · = South hemisph.) 47 78.13 78 8 (+ = East, - = West of Greenwich) Longitude Altitude 4 M above sea leve Time zone 5 Corresponding to an average difference Legal Time - Solar Time = 0h-12m ?


Geographical Location and Meteorology

Site	Delhi (lı	ndia)			
Data source	Meteonorm	'97			
	Global Irrad	Diffuse	Temper.	Wind Vel	Required Data
	k\wh/m².mth	kWh/m².mth	°C	m/s	 Horizontal global irradiation
January	118.0	39.0	14.7	3.10	🔽 Average Ext. Temperature
February	137.0	40.0	17.3	3.60	-
March	188.0	51.0	22.7	3.60	Extra data
April	207.0	58.0	28.8	3.60	 Horizontal diffuse irradiation
May	222.0	67.0	32.5	3.60	Vind velocity
June	197.0	72.0	32.9	3.60	
July	167.0	77.0	30.3	2.10	Irradiation units
August	160.0	72.0	29.9	2.10	⊂ kWh/m².day ● kWh/m².mth
September	171.0	58.0	29.5	3.10	C MJ/m².dav
October	165.0	45.0	26.2	2.10	C MJ/m² mth
November	129.0	37.0	20.9	2.10	C W/m²
December	115.0	35.0	16.0	2.60	C Clearness Index Kt
Year	1976.0	651.0	25.1	2.9	



Vol. 4, Issue 2, February 2017


Module and Inverter

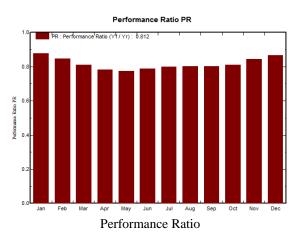
V. VALIDATION RESULTS

Simulation variant : tuticorin Main system parameters System type Grid-Connected **PV Field Orientation** tilt 9° azimuth 0° PV modules Model GES-6M225 Pnom 225 Wp Nb. of modules 4444 Pnom total 1000 kWp PV Array Model PVI Central 200 TL Inverter Pnom 224 kW ac Inverter pack Nb. of units 4.0 Pnom total 896 kW ac Unlimited load (grid) User's needs Main simulation results

System Production

Produced Energy 1576 MWh/year Specific prod. 1576 kWh/kWp/year Performance Ratio PR 77.4 %

Electricity injected into grid PV plant on New Delhi Location:


Geographical Site	New Delhi	i	Co	untry	India
Situation	Latitude	28.6°N	Long	itude	77.2°E
Time defined as	5	Time zone UT+5.5 0.20	Alt	itude	219 m
Meteo data:	New Delhi	Synthetic - MeteoNo	rm 7.1 stati	ion	
Simulation parameters					
Collector Plane Orientation	Tilt 9	•	Azimuth	0°	
Models used	Transposition F	erez	Diffuse	Erbs,	, Meteonorm
Horizon	Free Horizon				
	System Par	ameter			

Main system parameters	System type	Grid-Connected		
PV Field Orientation	tilt	9°	azimuth	0°
PV modules	Model	GES-6M225	Pnom	225 Wp
PV Array	Nb. of modules	4444	Pnom total	1000 kWp
Inverter	Model	PVI Central 200 TL	Pnom	224 kW ac
Inverter pack	Nb. of units	4.0	Pnom total	896 kW ac
User's needs	Unlimited load (grid)			

System Production

Produced Energy 1707 MWh/year Specific prod. 1707 kWh/kWp/year Performance Ratio PR 81.2 %

Results:

New simulation variant Balances and main results

	GlobHor	T Amb	Globinc	GlobEff	EArray	E_Grid	EffArrR	EffSysR
	kWh/m²	°C	kWh/m²	k₩h/m²	k₩h	kWh	%	%
January	118.2	13.23	137.8	132.7	124136	120719	13.79	13.41
February	137.0	17.24	154.6	149.8	134830	131104	13.35	12.98
March	188.2	23.29	203.0	197.2	169336	164711	12.77	12.42
April	206.5	29.22	213.4	207.7	171580	166805	12.31	11.96
May	222.1	32.61	222.7	216.3	176938	172066	12.16	11.82
June	196.5	32.14	194.6	188.3	157336	153023	12.38	12.04
July	166.4	31.42	165.5	159.9	135993	132197	12.58	12.23
August	159.9	30.36	161.8	156.3	133661	129892	12.65	12.29
September	170.6	28.58	179.5	174.0	148067	143955	12.63	12.27
October	164.5	25.49	182.2	176.7	151512	147366	12.73	12.38
November	128.5	19.32	149.7	144.4	129667	126155	13.26	12.90
December	115.1	14.85	137.4	132.2	122467	119091	13.64	13.27
Year	1973.5	24.85	2102.2	2035.4	1755523	1707085	12.78	12.43

Electricity Production at New Delhi:

Copyright to IARJSET

Vol. 4, Issue 2, February 2017

Comparison b/w Thiruvanantpuram and New DelhiEnergy production per year at new Delhi location is

Production

1707 Mwh.
Energy production per year at Thiruvanantpuram location is 1707 Mwh.

Grid connected Plant at Delhi location;

Location and Orientation

Project :	Grid-Connected Project a	at New Delhi		
Geographical Site	New De	lhi	Country	India
Situation Time defined as		de 28.6°N me Time zone UT+5.5 do 0.20	Longitude Altitude	77.2°E 219 m
Meteo data:	New De		tion - Synthetic	
Simulation parameters				
Collector Plane Orientation	n Tilt (5°	Azimuth 0°	
Models used	Transposition	Perez	Diffuse Perez,	Meteonorm
Horizon	Free Horizon			

PV Array Characteristics

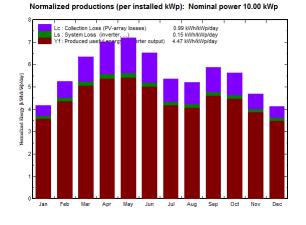
PV Array Characteristics				
PV module	Si-mono Model	Mono 250 Wp	60 cells	
Original PVsyst database	Manufacturer	Generic		
Number of PV modules	In series	10 modules	In parallel	4 strings
Total number of PV modules	Nb. modules	40	Unit Nom. Power	250 Wp
Array global power	Nominal (STC)	10.00 kWp	At operating cond.	8.87 kWp (50°C)
Array operating characteristics (50°C)	U mpp	271 V	l mpp	33 A
Total area	Module area	65.1 m²	Cell area	56.9 m ²

System Parameters

PV Array loss factors Thermal Loss factor Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s Wiring Ohmic Loss Global array res. 141 mOhm Loss Fraction 1.5 % at STC Module Quality Loss Loss Fraction -0.8 % Module Mismatch Losses Loss Fraction 1.0 % at MPP Incidence effect, ASHRAE parametrization IAM = 1 - bo (1/cos i - 1) bo Param. 0.05

Inverter	Model	4.2 kWac inverte	er with 2 MPPT	
Original PVsyst database	Manufacturer	Generic		
Characteristics	Operating Voltage	125-500 V	Unit Nom. Power	4.20 kWac
Inverter pack	Nb. of inverters	4 * MPPT 50 %	Total Power	8.4 kWac

Results


---- - - -

Main system parameters	System type	Grid-Connected		
PV Field Orientation	tilt	5°	azimuth	0°
PV modules	Model	Mono 250 Wp 60 cells	Pnom	250 Wp
PV Array	Nb. of modules	40	Pnom total	10.00 kWp
Inverter	Model	4.2 kWac inverter with 2	MPPT	4200 W ac
Inverter pack	Nb. of units	2.0	Pnom total	8.40 kW ac
User's needs	Unlimited load (grid)			

Main simulation results

System Production

Produced Energy 16.32 MWh/year Specific prod. 1632 kWh/kWp/year Performance Ratio PR 79.6 %

PR

Balances and main results

	GlobHor	T Amb	GlobInc	GlobEff	EArray	E_Grid	EffArrR	EffSysR
	kWh/m²	°C	kWh/m ²	kWh/m ²	MWh	MWh	%	%
January	118.2	13.23	129.4	124.0	1.153	1.115	13.69	13.24
February	137.0	17.24	147.2	142.1	1.270	1.227	13.26	12.81
March	188.2	23.29	196.9	190.9	1.624	1.570	12.67	12.25
April	206.5	29.22	210.9	205.0	1.672	1.616	12.19	11.78
May	222.1	32.61	223.0	216.5	1.745	1.686	12.02	11.62
June	196.5	32.14	195.9	189.5	1.560	1.509	12.24	11.83
July	166.4	31.42	166.3	160.5	1.347	1.301	12.45	12.02
August	159.9	30.36	161.3	155.7	1.315	1.269	12.53	12.09
September	170.6	28.58	176.0	170.3	1.433	1.385	12.52	12.10
October	164.5	25.49	174.8	169.0	1.438	1.390	12.64	12.22
November	128.5	19.32	140.6	135.0	1.205	1.165	13.16	12.73
December	115.1	14.85	127.8	122.3	1.126	1.089	13.54	13.09
Year	1973.5	24.85	2050.0	1980.8	16.888	16.323	12.66	12.24

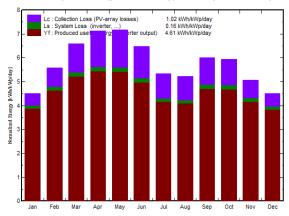
Legends:	GlobHor	Horizontal global irradiation	EArray
	T Amb	Ambient Temperature	E_Grid
	Globinc	Global incident in coll. plane	EffArrR
	GlobEff	Effective Global, corr. for IAM and shadings	EffSysl

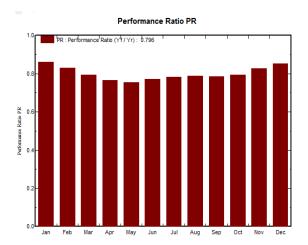
Energy injected into grid Effic. Eout array / rough area Effic. Eout system / rough area

Effect of Tilt and Location

Project :	Grid-Connected Project at I	New Delhi			
Geographical Site	New Delhi		Co	ountry	India
Situation Time defined as	Latitude Legal Time Albedo	Time zone UT+5.5		gitude titude	77.2°E 219 m
Meteo data:	New Delhi	MeteoNorm 7.1 stat	ion - Synthe	etic	
Simulation parameters					
Collector Plane Orientation	Tilt 10	0	Azimuth	0°	
Models used	Transposition Pe	rez	Diffuse	Perez,	Meteonorm
Horizon	Free Horizon				

Vol. 4, Issue 2, February 2017

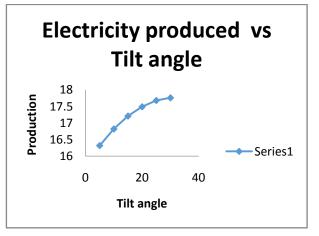

VI. RESULTS


Main system parameters	System type	Grid-Connected		
PV Field Orientation	tilt	10°	azimuth	0°
PV modules	Model	Mono 250 Wp 60 cells	Pnom	250 Wp
PV Array	Nb. of modules	40	Pnom total	10.00 kWp
Inverter	Model	4.2 kWac inverter with 2	MPPT	4200 W ac
Inverter pack	Nb. of units	2.0	Pnom total	8.40 kW ac
User's needs	Unlimited load (grid)			

Main simulation results System Production

Produced Energy 16.82 MWh/year Specific prod. 1682 kWh/kWp/year Performance Ratio PR 79.6 %

Normalized productions (per installed kWp): Nominal power 10.00 kWp



Balances and main results

	GlobHor	T Amb	Globinc	GlobEff	EArray	E_Grid	EffArrR	EffSysR
	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	%	%
January	118.2	13.23	139.8	134.8	1.244	1.203	13.67	13.22
February	137.0	17.24	156.4	151.6	1.345	1.300	13.22	12.77
March	188.2	23.29	204.4	198.6	1.679	1.624	12.63	12.21
April	206.5	29.22	213.9	208.2	1.692	1.635	12.15	11.74
May	222.1	32.61	222.5	216.1	1.739	1.681	12.01	11.61
June	196.5	32.14	194.1	187.9	1.546	1.495	12.24	11.83
July	166.4	31.42	165.2	159.6	1.339	1.293	12.45	12.02
August	159.9	30.36	161.8	156.3	1.318	1.273	12.52	12.09
September	170.6	28.58	180.3	174.8	1.465	1.416	12.49	12.07
October	164.5	25.49	183.9	178.5	1.507	1.457	12.59	12.17
November	128.5	19.32	151.9	146.6	1.298	1.256	13.13	12.70
December	115.1	14.85	139.7	134.6	1.229	1.189	13.52	13.08
Year	1973.5	24.85	2114.0	2047.8	17.402	16.819	12.65	12.23
Legends: GlobHo T Amb		ntal global irradi: nt Temperature	ation		EArray E Grid	Effective energ Energy injecte	y at the output d into orid	of the array
Globinc		incident in coll.	plane		EffArrR	Effic. Eout arra		

Production for different Tilt

Tilt is taken 5, 10,15,20,25 and 30 degree

Effect of plane type Si-MONO Type Plane

Geographical Site		New	Delhi				Country	India
Situation Time defined as		Legal	itude Time bedo		ie UT+5.5	L	ongitude Altitude	77.2°E 219 m
Meteo data:		New	Delhi	MeteoNo	orm 7.1 static	n - Sy	nthetic	
Simulation parameters								
Collector Plane Orientation		Tilt	30°		Az	imuth	0°	
Models used		Transposition	Perez		D	iffuse	Perez, Me	teonorm
Horizon		Free Horizon						
PV Array Characteristics								
PV module	Si-mono	Model	Mon	o 250 Wp	60 cells			
Original PVsyst database		Manufacturer	Gene	eric				
Number of PV modules		In series	10 m	odules	In	parallel	4 string	S
Total number of PV modules		Nb. modules	40		Unit Nom.	Power	250 Wp	
Array global power	N	ominal (STC)	10.00) kWp	At operatin	g cond.	8.87 kV	/p (50°C)
Array operating characteristics (50°C)		U mpp	271 \			l mpp	33 A	
Total area		Module area	65.1	m²	C	ell area	56.9 m²	

Inverter

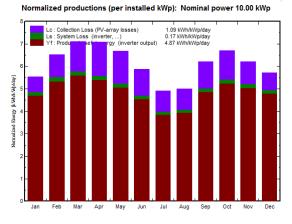
Inverter Original PVsyst database	Model Manufacturer	4.2 kWac inverter with 2 MPPT Generic			
5	Operating Voltage		Unit Nom. Power	4.20 kWac	
Inverter pack	Nb. of inverters	4 * MPPT 50 %	Total Power	8.4 kWac	
PV Array loss factors					
Thermal Loss factor	Uc (const)	20.0 W/m²K	Uv (wind)	0.0 W/m²K / m/s	
Wiring Ohmic Loss Module Quality Loss Module Mismatch Losses	Global array res.	141 mOhm	Loss Fraction Loss Fraction Loss Fraction		
Incidence effect, ASHRAE parametrization	IAM =	1 - bo (1/cos i - 1)	bo Param.	0.05	

Copyright to IARJSET

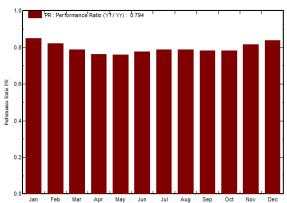
IARJSET

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified

Vol. 4, Issue 2, February 2017

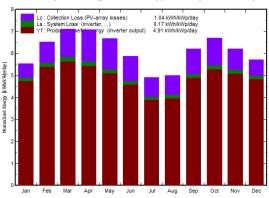

Results

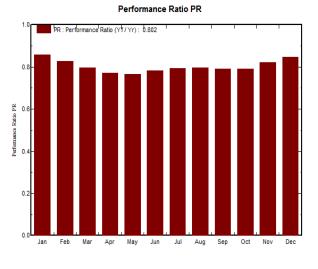
Main system parameters	System type	Grid-Connected		
PV Field Orientation	tilt	30°	azimuth	0°
PV modules	Model	Mono 250 Wp 60 cells	Pnom	250 Wp
PV Array	Nb. of modules	40	Pnom total	10.00 kWp
Inverter	Model	4.2 kWac inverter with 2	MPPT	4200 W ac
Inverter pack	Nb. of units	2.0	Pnom total	8.40 kW ac
User's needs	Unlimited load (grid)			


Main simulation results

System Production

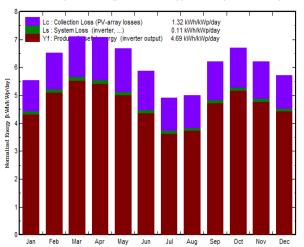
Produced Energy 17.76 MWh/year Specific prod. 1776 kWh/kWp/year Performance Ratio PR 79.4 %




Performance Ratio PR

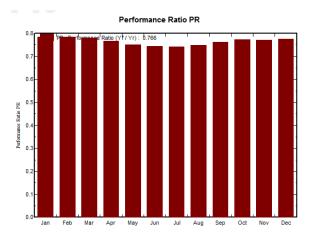
Si-Poly type

Normalized productions (per installed kWp): Nominal power 10.00 kWp

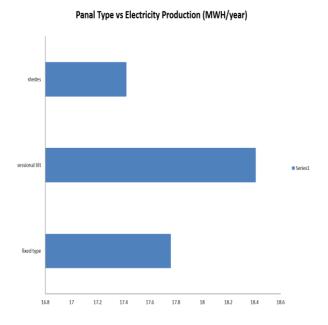

Balances and main results

	GlobHor	T Amb	Globinc	GlobEff	EArray	E_Grid	EffArrR	EffSysR
	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	%	%
January	118.2	13.23	171.7	167.9	1.523	1.472	13.63	13.17
February	137.0	17.24	182.6	178.8	1.564	1.511	13.16	12.71
March	188.2	23.29	220.6	215.4	1.814	1.753	12.64	12.22
April	206.5	29.22	212.4	206.8	1.695	1.637	12.26	11.84
May	222.1	32.61	207.3	200.9	1.644	1.588	12.19	11.78
June	196.5	32.14	176.2	170.3	1.427	1.379	12.44	12.02
July	166.4	31.42	152.1	147.0	1.251	1.208	12.64	12.20
August	159.9	30.36	155.0	150.1	1.278	1.234	12.67	12.23
September	170.6	28.58	186.4	181.3	1.523	1.471	12.56	12.13
October	164.5	25.49	208.1	203.6	1.699	1.642	12.55	12.13
November	128.5	19.32	186.2	182.2	1.584	1.531	13.07	12.64
December	115.1	14.85	177.4	173.7	1.553	1.501	13.45	13.00
Year	1973.5	24.85	2236.0	2178.2	18.555	17.927	12.75	12.32

Legends:	GlobHor	Horizontal global irradiation	EArray	Effective energy at the output of the array
	T Amb	Ambient Temperature	E_Grid	Energy injected into grid
	Globinc	Global incident in coll. plane	EffAnR	Effic. Eout array / rough area
	GlobEff	Effective Global, corr. for IAM and shadings	EffSysR	Effic. Eout system / rough area


A-Si:H single type

Normalized productions (per installed kWp): Nominal power 9.98 kWp



Vol. 4, Issue 2, February 2017

Balances and main results T Amb GlobHo Globing GlobEff EArray E_Grid EffArrR EffSysR MWH kWh/m MW 171.7 182.6 167.9 178.8 215.4 206.8 200.9 170.3 147.0 150.1 181.3 203.6 182.2 173.7 118.2 137.0 13.23 17.24 23.29 29.22 32.61 32.14 31.42 30.36 28.58 25.49 19.32 14.85 1.373 1.461 1.754 1.662 1.591 1.342 1.157 1.188 1.452 1.640 1.464 1.403 1.343 1.428 1.715 1.624 1.553 1.309 1.126 1.157 1.418 1.604 1.431 1.372 4.77 4.74 4.67 4.58 4.54 4.53 4.57 4.65 4.70 4.69 4.72 4.66 4.64 4.56 4.47 4.43 4.41 4.45 4.54 4.59 4.58 January February March April May June July August Septemb October November 188.2 220.6 212.4 207.3 176.2 152.1 155.0 186.4 208.1 186.2 177.4 188.2 206.5 222.1 196.5 166.4 159.9 170.6 164.5 128.5 Decer 115.1 4.61 Year 1973.5 24.85 2236.0 2178.2 17.487 17.079 4.66 4.55 EArray E_Grid EffArrR EffSysR Effective energy at the output of the array Energy injected into grid Effic. Eout array / rough area Effic. Eout system / rough area ntal olobal irradiatio Leg Hori T Amb Globinc GlobEff Ambient Temperature Global incident in coll. plane Effective Global, corr. for IAM a

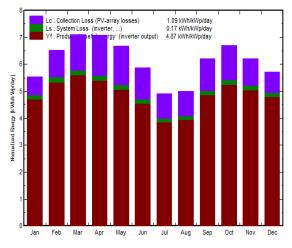
Results of plane type

Effect of Type of field Fixed plane type field

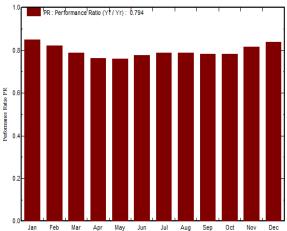
Geographical Site	New Delhi		Country	India
Situation	Latitude	28.6°N	Longitude	77.2°E
Time defined as	Legal Time	Time zone UT+5.5	Altitude	219 m
	Albedo	0.20		
Meteo data:	New Delhi	MeteoNorm 7.1 station	n - Synthetic	

Simulation parameters				
Collector Plane Orientation	Tilt	30°	Azimuth	0°
Models used	Transposition	Perez	Diffuse	Perez, Meteonorm
Horizon	Free Horizon			
Results				
Main system parameters	System type	Grid-Connected		
PV Field Orientation	tilt	30°	azimuth	0°
PV modules	Model	Mono 250 Wp 60 cells	Pnom	250 Wp
PV Array	Nb. of modules	40	Pnom total	10.00 kWp
Inverter	Model	4.2 kWac inverter with 2	2 MPPT	4200 W ac
Inverter pack	Nb. of units	2.0	Pnom total	8.40 kW ac

Unlimited load (grid)


Main simulation results

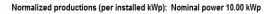
User's needs

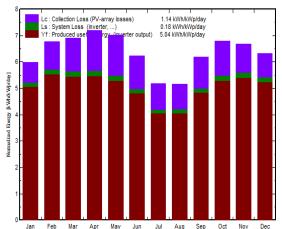

System Production

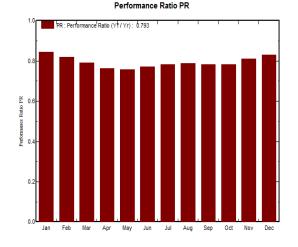
Produced Energy 17.76 MWh/year Specific prod. 1776 kWh/kWp/year Performance Ratio PR 79.4 %

Normalized productions (per installed kWp): Nominal power 10.00 kWp

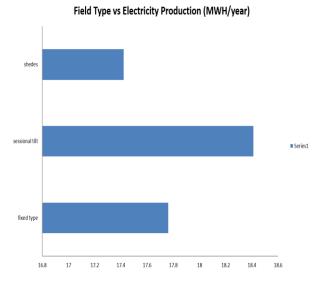
Performance Ratio PR




Vol. 4, Issue 2, February 2017


Effect of field type on production

		GlobHor	T Amb	GlobInc	GlobEff	EArray	E_Grid	EffArrR	EffSysR
		kWh/m²	°C	kWh/m²	kWh/m ²	MWh	MWh	%	%
January		118.2	13.23	171.7	167.9	1.511	1.461	13.52	13.07
February		137.0	17.24	182.6	178.8	1.550	1.498	13.05	12.60
March		188.2	23.29	220.6	215.4	1.796	1.736	12.51	12.10
April		206.5	29.22	212.4	206.8	1.677	1.620	12.13	11.71
May		222.1	32.61	207.3	200.9	1.627	1.572	12.06	11.66
June		196.5	32.14	176.2	170.3	1.414	1.366	12.33	11.91
July		166.4	31.42	152.1	147.0	1.240	1.197	12.53	12.09
August		159.9	30.36	155.0	150.1	1.267	1.223	12.56	12.12
September		170.6	28.58	186.4	181.3	1.508	1.457	12.44	12.02
October		164.5	25.49	208.1	203.6	1.682	1.626	12.42	12.01
November		128.5	19.32	186.2	182.2	1.570	1.518	12.96	12.53
December		115.1	14.85	177.4	173.7	1.540	1.489	13.34	12.90
Year		1973.5	24.85	2236.0	2178.2	18.383	17.762	12.63	12.21
egends: G	lobHor	Horizor	tal olobal irradi	ation		EArray	Effective energ	v at the output	of the array
	Amb		t Temperature			E Grid	Energy injecte	· ·	,
				plane		EffArrR	Effic. Eout arra		
	Globlac Global incident in coll. plane GlobEff Effective Global. corr. for IAM and shadings			dinas	EffSysR		tem / rough are		


Sessional tilt type field

		GlobHor	T Amb	GlobInc	GlobEff	EArray	E_Grid	EffArrR	EffSysR
		kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	%	%
January		118.2	13.23	185.7	182.4	1.623	1.569	13.43	12.98
February		137.0	17.24	189.5	185.9	1.605	1.550	13.01	12.57
March		188.2	23.29	213.8	208.4	1.750	1.691	12.57	12.16
April		206.5	29.22	215.9	210.4	1.703	1.645	12.12	11.71
May		222.1	32.61	217.5	211.2	1.701	1.644	12.02	11.62
June		196.5	32.14	187.2	181.1	1.494	1.444	12.27	11.86
July		166.4	31.42	160.4	155.0	1.301	1.256	12.47	12.04
August		159.9	30.36	160.1	155.0	1.305	1.260	12.53	12.09
September		170.6	28.58	185.6	180.4	1.503	1.453	12.45	12.03
October		164.5	25.49	210.6	206.1	1.701	1.645	12.42	12.00
November		128.5	19.32	200.6	197.2	1.681	1.625	12.87	12.44
December		115.1	14.85	196.0	193.0	1.685	1.629	13.21	12.77
Year		1973.5	24.85	2322.9	2265.9	19.052	18.409	12.60	12.18
egends:	GlobHor	Horizor	ntal global irradi	ation		EArray	Effective energy	v at the output	of the array
-	T Amb		nt Temperature			E Grid	Energy injecte		,
	GlobInc		incident in coll.	nlane		EffArrR	Effic. Eout arra		

VII. CONCLUSION

Computational method is a effective one for analysis and design of a solar panel power plant. In present study analysis is done for grid connected solar system, a parametric analysis is presented in this study. Energy production from a grid connected solar panel system is increased with increasing tilt angle. Sessional tilt will give large production of energy in comparison to fixed type and shading type.

REFERENCES

- Elieser Tarigan, Djuwari, Fitri Dwi Kartikasari. Techno-Economic simulation of a Grid-Connected PV system Design as specifically applied to Residential in Surabaya, Indonesia. Energy Procedia 2015;65: 90-99.
- [2] Deepali Sharma, Anula Khare. Comparative Analysis of Solar PV modules. International Journal on Emerging Technologies 2014;5(2) 22-26.
- [3] Jones K. Chacko, Prof. K. J Thomas. Analysis of Different Solar Panel Arrangements using PVSYST. International Journal of Engineering Research and Technology 2015;Volume 4,Issue 4.ISSN:2278-0181.
- [4] Parvathy Suresh, Jaimol Thomas, Anu A.G. Performance analysis of a stand-alone PV systems using PVsyst. Proceedings of second IRF second International Conference on 10th August 2014, Cochin, India, ISBN: 978-93-842-09-43-8.
- [5] C.P. Kandasamy, P. Prabu, K.Niruba. Solar potential Assessment using PVsyst Software.International conference on Green Computing, Comunication and conservation of Energy(ICGCE) 2013, 978-1-4673-6126-2/13
- [6] Maharaja .K, Sangeetha .S, Mareeswari. K. Sizing of Solar PV Power Plant in Stand-Alone Operation. International Journal of Engineering Research and Technology 2014; Volume 3,Issue 6.ISSN:2278-0181.
- [7] http://www.pvsyst.com/images/pdf/PVsyst_Tutorials.pdf
- [8] Petros J Axaopoulos, Emmanouil D Fylladitakis, Konstantinos Gkarakis. Accuracy Analysis of Software for the estimation and planning of photovoltaic installations. International Journal of energy and environmental engineering 2014, 5:1.

Copyright to IARJSET